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§ Physics Department, Fudan University, Shanghai, People’s Republic of China 
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Abstract. By means of the method of coherent states and the real time Green function, the 
spontaneous breaking of symmetry in the (1  + 1)-dimensional real 4’+ 44 field and its 
restoration at finite temperature are investigated. A new soliton solution which has essential 
differences from the kink and antikink solutions of 44 field is found. The soliton mass 
and the critical temperature are given. 

1. Introduction 

In a series of previous papers, using the generalised Bogoliubov transformation to 
construct a coherent state under the pairing approximation of the real time Green 
functions, we have studied the (1 + 1)-dimensional real Higgs 44 field (Su et al 1983), 
the (1 +3)-dimensional real Higgs 44 field (Su 1983), the (T model (Su and Bi 1984a, b), 
the complex (1 + 3)-dimensional Higgs 44 field, the U( 1) + 44 field (Su and Bi 1984a) 
and the Mohapatra-Senjanovic model (Mohapatra and Senjanovic 1979a, b, c, 1980, 
Su and Bi 1984b), and given their elementary excitation spectra and corresponding 
critical temperatures. All these results confirm that this method is successful for 
degenerate symmetric Bose systems. A problem which then naturally arises is: can 
this method also be used to discuss the non-degenerate non-symmetric Bose system? 
In this paper, as an example, we shall discuss the 43+ 44 field. Two different vacua- 
one the global (real vacuum), the other the local (false vacuum)-occur, which are 
distinct since the global symmetry 4 t* -4  is destroyed by the presence of the (b3 term. 
This is the non-degenerate case. It can easily be seen that we cannot get the  kink and 
antikink soliton. However, as we can pcove later, we can obtain another soliton solution 
which corresponds to a one-dimensional motion from the turning point to the false 
vacuum. 

The organisation of this paper is as follows. In 0 2, after quantising the Hamiltonian 
of 43+  44, we perform the Bogoliubov transformation and find the three types of 
solution, one of which describes a new soliton. In § 3, using the real time Green 
function method at zero temperature, under the first-order pair cut-off approximation, 
we get the elementary excitation spectra in these three cases. In 0 4, we extend these 
$ On leave from Department of Physics, Fudan University, Shanghai, People’s Republic of China. 
11 Present address: Physics Department, California Institute of Technology, Caltech, Pasadena, California 
91125, USA. 
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results to finite temperature and obtain the critical temperature above which the 
symmetry is restored. In Q 5 ,  a summary and discussion are given. 

R-k Su and X - g  Gu 

2. Hamiltonian and soliton solutions 

The Lagrangian density of the (1 + 1)-dimensional real 43 + 44 model is 

where A > 0 is a small parameter and can be considered as perturbation. Here and 
hereafter we use the same notation as Su et a1 (1983). Performing the canonical 
quantisation 

with 

[ ; k ( f ) ,  6Lr(t)1 = a k k '  

and 

w k  = ( pz + k 2 )  '" 
we obtain the Hamiltonian of our system as 

:H:=HZ+H,+H4 

(2.3) 

(2.4) 

(2.8) 
A t  A t  A A + 4( 6 t k l  a * k 2 6 k 3 6 k ,  + 6 ! k ,  6 ?. k 2 6  :k3 6 k 4 )  + 6a - k l  a - k 2 a  k ,  a,].  

In order to introduce the coherent state configurations, let us perform the generalised 
Bogoliubov transformation 

6(k) = f ( k ) + c ^ ( k ) .  (2.9) 

Noticing that 

6 k  f* ( 2 r /  L)'126( k )  

we can rewrite the Hamiltonian (2.5) as 

:H:=HA+Hi+HA+HS+H; (2.10) 
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+ I (" + k2 + k3)  { [ 3f( k ,  )f( k2)  + 6f*( - k ,  )f( k2)  
12 JIT ( W k l W ~ 2 w k , ) 1 / 2  

+ 3f*( - kl)f*( - k,)][c*(k,) + tt(-k3)]} dk1 dk2 dk, 

h 

1 2 J I T  
+ ---= [ k1 + k2 + k3)  { [ 3f( k ,  ) + 3f * ( - k ,  ) ] [ E (  k,)  c*( k 3 )  

1/2 ( w k ,  w k z w k ,  

+ c^+( - k2) I?( -k3) + 2tt( - k3) E( k , ) ] }  dkl dkz d k3 

(2.12) 

(2.13) 
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+ tt( - k2)  c^t (- k3) tt( - k4) + 3 E'( - kp)c^( k3) c*( k4) + 3Ct( - k ~ ) c ^ ~ (  -k3) c^( k4)]} 

(2.14) 

+ Ct (- k , )  Ct( - k2) Ct( - k3) tt( - k4) + 4[ P( - k , )  c^+( - k*)c^'( - k3) c^( k4) 

+ I?( - k,)c^( k2) c^( k3) c (̂ k4)] + 6tt( -kl) ĉ '( - kp)c^( k3) c^( k4)} d kl dkp d k3. 
(2.15) 

At zero temperature, as in Su et al (1983), the momentum distribution function f( k )  
which characterises the coherent state I f )  should be determined by 

6 ( : H : ) / G f ( p ) = S H ; / 6 f ( p ) = O  (2.16) 

and 

6 ( : H : ) / 6 f * ( p )  = 6 H ; / 6 f * ( p )  =o. 
Thus we have 

(2.17) 

and 

(2.19) 

y(p)=fO= y'(u) exp(-ipu) du (2.20) Jw, -m 

and 

(2.21) 



(1  + 1)-dimensional real 43 + 44 jield at jinite temperature 2895 

Substituting (2.20) and (2.21) into (2.19), we obtain equation for ?(U): 

d2y/du2+ fm2f - 4 ~ g ~ y ' ~  - 2v%Aj2 = 0. (2.22) 

We can easily prove that equation (2.22) has three types of solution. 

(a) J(u)  = o  (2.23) 

f ( k ) = O .  (2.24) 

The expectation value of energy in a vacuum is 

( : H : ) =  U =  U(a)=O. (2.25) 

This trivial solution is just the same as the 44 field; it means that our system is in an 
unstable normal state. 

Thus 

(2.26) 

(2.27) 

(2.28) 

m 4 ~  A ~ L  hL 
16g2 24g 24g 

16g2 24g6 24g 

U(b1) = (A2+3g2m2) -7 (A2+2g2m2)3/2 

(2.29) 
m 4 ~  A ~ L  AL 

U( b2) = - - - - (A2+3g2m2)+---;j (A2+2g2m2)3/2. 

These solutions correspond to the false vacuum and true vacuum respectively in which 
the boson condensation with zero momentum occurs. Obviously, if A + 0, the solution 
(2.26) reduces to the 44 solution. 

(c) In the appendix we get the soliton solutions of equations (2.22) as 

( n + l )  X 
( n +  1)2+ k2/A 

[ 2A(B) I=,,%,[- R ] ( n + 1 ) 2 + k 2 / A  in + 1 - - -  D A 1 [D/2A-(B/A)1/2] ( n + l )  

(2.32) 
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L 
+-(-$&A -4g2b, )  L-4 

2 D /  A - (1 /2 f+)(  1 + D’/ A B )  + ( l / f + ) (  A/ B - 3 D 2 / 4 B 2 )  ( [ ( l / f+) ’ -  B / A 1 2  (l / f+)’- B / A  

[ 4 ( l / f + ) 2 + 2 D 2 / A 2 - 4 B / 3 A +  D3/3A2Bf+  - 14D/3Af+]  
r ( l / f + ) 2  - ~ / 4 3  

( 5  D3 /  12AB2f+ - 5 D / 6 B f + )  + (50’18 B3f+ - 5 A D / 4 B 2 f + )  + 
[ ( l / f + ) * - B / A ] ’  (l/f+)2 - B / A  

(2.33) 

(c2)  Changing 

-&A + ( T A  * + 2rg2m2)”’ -&A - ( T A  ’ + 2 r g  ’ m ’) 1’2 
b ,  = to bZ= (2.33‘) 

we get the corresponding y, ( 4 ) ,  f ( k ) ,  U ( c 2 )  respectively. 
We can easily prove that the ground-state energy given by (2.33) and (2.33’) is 

negative. This means that these soliton solutions, which imply that the Bose condensa- 
tion not only occurs at zero momentum, but also prevails over the whole range of 
momenta, are stable. The physical meaning of these solutions is obvious: a particle 
moves from f+ towards the false vacuum and stays there permanently. The first term 
2 r b 8 ( k )  is the contribution of the false vacuum and the other term comes from the 
soliton movements (see the appendix). 

4 r g  4 r g  

3. The real time Green function (zero temperature) 

As in Su et a l (1983) ,  we can use the equation of motion for a real time Green function 
to find the elementary excitation spectra of the 43 + 4 1 ~  system under the first-order 
pair cut-off approximation. For simplicity, let us write down the main results only. 

Define the Green function 

GI = ((c^(k) I c^t(k))) G2 = ((P( - k )  I Et( k)) )  (3.1) 

in spectral representation and we get 

1 E + &  G 1 Ak 
2T E ’ - ( Q : - A ; )  G’=z E 2 - ( Q ; - A ; )  2 -  
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where 

(3.3) 

h k  = a k  - W k .  (3.4) 

(3.5) 

The poles of the Green function give us the elementary excitation spectra 

P = a2 P - - A ~  P‘ 

In the uniform condensation phase (2.27), we obtain 

E i = p Z +  m2+(1/2g2)[A2FA(A2+2g2m2)1/2] .  (3.6) 

When A + O ,  this reduces to the 44 case. 
In the soliton case (2.33) and (2.33’), the elementary excitation spectrum is 

m2 
2 

2 y 2 2 1 n (  ( R  + D/2A)’ R 2  - B/A Ei=p2--+12~b2g2+- 

[ D/2A - (B/A)’/‘ + R exp(&L)][ D/2A + ( B/A)”2] 
[ D/2A+ ( B/A)’l2+ R exp(&L)][ D/2A - (B/ A)”2] In( 

x [ - 2 + E ( A ) l i 2  2A B 

8J;;A ( R  + D/2A)’- B/A 
+4&Ab+- 

L a  In( R 2  (3.7) 

When L+m, it has the same value as (3.6). So in either case we find that the mass 
of the elementary excitation is equal to 

{ m2 + ( 1/2rg2)[ h 2  F A ( A 2  + 2g2m2) 1’2]}’’2 as L+co. 

4. The critical temperature and phase transition 

In Su et a1 (1983), after replacing the vacuum average by the ensemble average, the 
authors gave a very important result for the 44 system: all formulae at zero temperature 
are still valid at finite temperature except the substitution of M for m, where 

M2 = m2 - 12g2v (4.1) 

and 

1 dk 
( k2 + M2)‘l2 exp[ ( k2 + M2)‘I2/ T - 11’ (4.2) 

In this paper we would like to point out that this result is also valid in the 4’+ 44 
system. Then, when L + m ,  the elementary excitation spectrum in case (b) or (c) is 

E’, = p 2  + M 2 +  ( 1/2g2)[A2 7 A ( A 2  + 2g2M2)’/2]. (4.3) 
Following Su et a1 (1983), the equation which determines the function M (  T )  in the 
weak coupling condition is 

(1 - u)w3  - { m i -  ( 3 g 2 / r ) [ l n ( m o / 4 r ~ ) +  y ] ) w  + 3 g 2 ~ =  o (4.4) 
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where 

w 2 =  M 2 +  U; (4.5) 

The critical temperature is 

Tc= (2mA/98g2)(1 - U;){l -(9g2/2.rrm~)[ln(g2/m~)+0.0996]}. (4.7) 

5. Summary and discussion 

Since the pioneering work of Dolan and Jackiw (1974), Bernard (1974) and Weinberg 
(1974) in finite temperature quantum field theory, many studies have been made of 
the non-degenerate scalar 43+  44 Bose system (for example, see Aoyama and Quinn 
1984). However, to our knowledge, except for the one-dimensional classical solid 
chain case (Sun and Lee 1979), the soliton solution (2.33) and (2.33‘) has not been 
given in quantum field theory up to now. Obviously, if A # 0,  the kink and antikink 
specific solution cannot occur in the 4 3 + 4 4  system, since the 43  term destroys the 
symmetry and causes the two vacua to have different energy. However, we can find 
another specific soliton solution (2.33) and (2.33’) of the non-linear equation (2.22). 
This solution ?(U) is an even function of U, so it can satisfy the periodic boundary 
condition, but it cannot reduce to the kink-antikink solution when A + 0. It means 
that it is a new specific solution which is different from the kink and antikink. Notice 
that many authors try to use the 43+44 to construct a soliton bag (Goldflam and 
Wilets 1982, Fiebig and Hadjimichael 1984, Bi er a1 1986). Our soliton solutions may 
be of interest and helpful in the solution of the bag model. 

Finally, we would like to point out that the real time Green function approach 
with the coherent state method is also a good method for the non-degenerate Bose 
system, as we have seen in the d3+  44 model. 
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Appendix 

In order to find the soliton solution of equation (2.22), let us discuss this equation 
carefully. If we imagine y’ as displacement and U as time, then d2y/du2 is acceleration 
and equation (2.22) represents a particle moving in a potential (figure 1) 
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Figure 1. 

Then the energy integral is 

E = i(d$/du)2 +:m2F2 - 7 r g 2 f 4  - $ G A Y 3  

where E is the integral constant (total energy). Introducing 

f = f + b  

and b determined by the condition 

- 7rg2b4 - i ( 4 ~ ) ’ ’ ~ A b ~  +$m2b2 - E = 0 

we can recast equation (A2) as (+? = l - A f + A f 2 + A f  D B  K 

where 

A =  12n-g2b2+4\r;;Ab-im2 

B = 2n-g2 

D=-8rg2b-!J ; ;A  

K =87rg2b3+4&Ab2-m2b 

T = O U .  

In order to give a specific soliton solution, let us choose 

K = 0 = d fi/d$l,-=b E = C ( b )  

where 

-A& * (TA’ + 2 5 ~ g ~ m ~ ) ” ~  b = b i =  
4lTg2 
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U ( f )  

Figure 2. 

The equation then becomes 

and the corresponding total energy E’ = 0. 
It can easily be proved that the equation has solutions 

2R e*‘ 
f = ( D / 2 A + R  e ‘ l ) ’ - B / A  

where the positive and negative signs in the exponential correspond to T > 0 and r < 0 
respectively. The integral constant R is chosen as 

(A1 1) R = 1/  f+ - D/2A 

to guarantee the periodic boundary conditions, where 

f +  = [ D + (0’ - 4AB)”’]/2B 

is the turning point of the potential (figure 2). 
From figure 2 we see that the particle with total energy zero can move only in the 

region [ f+ ,  01; otherwise it will go to infinity when T + 00. If the particle starts from 
any point between f+ and 0, its motion at T > 0 and r < 0 will not be symmetric. So 
we must have f ( T = 0 )  = f +  and from this condition we get ( A l l ) .  
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